(x).fx ~ (x,y).fx fy
      (x,y).fx fy..~ (x,y,z).fx fy fz
      (x,y,z).fx fy fz..~ (x,y,z,u).fx fy fz fu
““Wie müßte man es nun anfangen, die allgemeine Form solcher Sätze zu schreiben? Die Frage hat offenbar einen guten Sinn. Denn, wenn ich nur einige solcher Sätze als Beispiele hinschreibe, so versteht man, was das Wesentliche dieser Sätze sein soll.””
     Nun, dann ist also die Reihe der Beispiele schon eine Notation; denn das Verstehen dieser Reihe besteht doch in der Verwendung dieses Symbols und darin, daß wir es von andern in demselben System unterscheiden, z.B. von:
      (x).fx
      (x,y,z).fx fy fz
      (x,y,z,u,v).fx fy fz fu fv.
Warum sollen wir aber nicht das allgemeine Glied der ersten Reihe so schreiben:
     ( x1 … xn).Π
xn
x1
fx ( x1 … xn + 1). Π
xn + 1
x1
fx? Ist diese Notation unexakt? Sie selbst soll ja nichts bildhaft machen,
352
sondern nur auf die Regeln ihres Gebrauchs, das System in die sie gebraucht wird, kommt es an. || , auf das System, in dem sie gebraucht wird, kommt es an. Die Skrupel, die ihr anhaften, schreiben sich von einem Gedankengang her, der sich mit der Zahl der Urzeichen in dem Kalkül der ‘Principia Mathematica’ beschäftigte.
353