Der || Ein Beweis – kann ich sagen – ist eine Figur, an deren einem Ende gewisse Sätze stehen und an deren anderm Ende ein Satz stehe || steht (den wir den ‘bewiesenen’ nennen).
     Man kann als Beschreibung so einer Figur sagen: in ihr folge der Satz ..... aus ..... Das ist eine Form der Beschreibung eines Musters, das z.B. auch ein Ornament (Tapetenmuster) sein könnte. Ich kann also sagen: “In
dem Beweise, welcher auf jener Tafel steht, folgt der Satz p aus q und r”, und das ist einfach eine Beschreibung dessen, was dort zu sehen ist. Es ist aber nicht der mathematische Satz, daß p aus q und r folgt. Dieser hat eine andere Anwendung. Er sagt – so könnte man es ausdrücken – daß es Sinn hat, von einem Beweise (Muster) zu reden, in welchem p aus q und r folgt. Wie man sagen kann, der Satz “weiß ist heller als schwarz” sage aus, es habe Sinn, von zwei Gegenständen zu reden, von denen der hellere weiß, der andere schwarz sei, aber nicht von zwei Gegenständen, von denen der hellere schwarz, der andere weiß sei.