700
           Das, was Skolem man den rekursiven Beweis von A nennt, kann man so schreiben:
a + (b + 1) = (a + b) + 1
a + (b + (c + 1)) = a + ((b + c) + 1) = (a + (b + c)) + 1B
(a + b) + (c + 1) = ((a + b) + c) + 1
           In diesem Beweis kommt offenbar der bewiesene Satz gar nicht vor. – Man müsste nur eine allgemeine Bestimmung machen // treffen // , die den Uebergang zu ihm erlaubt. Diese Bestimmung könnte man so ausdrücken:
uf(1) = g(1)D
vf(c + 1) = F(f(c)) f(c) = g(c)
wg(c + 1) = F(g(c))
Wenn 3 Gleichungen von der Form u, v, w bewiesen sind, so sagen wir, es sei “die Gleichung D für alle Kardinalzahlen bewiesen”. Das ist eine Erklärung dieser Ausdrucksform durch die erste. Sie zeigt, dass wir das Wort “beweisen” im zweiten Fall anders gebrauchen als im ersten. Es ist jedenfalls irreführend zu sagen, wir hätten die Gleichung D oder A bewiesen, und vielleicht besser zu sagen, wir hätten ihre Allgemeingültigkeit bewiesen, obwohl das wieder in anderer Hinsicht irreführend ist.
           Hat nun der Beweis B eine Frage beantwortet, eine Behauptung als wahr erwiesen? Ja, welches ist denn der Beweis B: Iist es die Gruppe der 3 Gleichungen von der Form u, v, w, oder die Klasse der Beweise dieser Gleichungen? Diese Gleichungen behaupten ja etwas (und beweisen nichts in dem Sinne, in dem sie bewiesen werden). Die Beweise von u, v, w aber beantworten die Frage, ob diese 3 Gleichungen stimmen, und erweisen die Behauptung als wahr, dass sie stimmen. Ich kann nun erklären: die Frage, ob A für alle Kardinalzahlen gilt, solle bedeuten: “gelten für die Funktionen
f(x) = a + (b + x), g(x) = (a + b) + x
Gleichungen u, v und w?” Und dann ist diese Frage durch den rekursiven Beweis von A beantwortet, wenn hierunter die Beweise von u, v, w verstan-
700
den werden (bezw. die Festsetzung von u und die Beweise von v und w mittels u).
                    Ich kann also sagen, dass der rekursive Beweis ausrechnet, dass die Gleichung A einer gewissen Bedingung genügt; aber es ist nicht eine Bedingung der Art, wie sie etwa die Gleichung (a + b)² = a² + 2ab + b² erfüllen muss, um “richtig” genannt zu werden. Nenne ich A “richtig”, weil sich Gleichungen von der Form u, v, w dafür beweisen lassen, so verwende ich jetzt das Wort “richtig” anders, als im Falle der Gleichungen u, v, w, oder (a + b)² = a² + 2ab + b².