685
     
3 × 2 = 5 + 1
3 × (a + 1) = 3 + (3 × a) = (5 + b) + 3 = 5 + (b + 3)
Warum nennst Du denn diese Induktion den Beweis dafür, daß (n): n2 .. .. 3 × n ≠ 5?! – Nun, siehst Du denn nicht, daß der Satz, wenn er für n = 2 gilt, auch für n = 3 gilt, und dann auch für n = 4, und daß es immer so weiter geht? (Was erkläre ich denn, wenn ich das Funktionieren des induktiven Beweises erkläre?) Du nennst ihn also einen Beweis für “f(2) & f(3) & f(4) & u.s.w.”, ist er aber nicht vielmehr die Form der Beweise für “f(2)” und “f(3)” und “f(4)” u.s.w.? Oder kommt das auf eins hinaus? Nun, wenn ich die Induktion den Beweis eines Satzes nenne, dann darf ich es nur, wenn das nichts anderes heißen soll, als daß sie jeden Satz einer gewissen Form beweist. (Und mein Ausdruck bedient sich der Analogie vom Verhältnis der Sätze “alle Säuren färben Lackmuspapier rot”, “Schwefelsäure färbt Lackmuspapier rot”.)
     Denken wir nun, jemand sagte “prüfen wir nach, ob f(n) für alle n gilt” und nun fängt er an, die Reihe zu schreiben:
3 × 2 = 5 + 1

     3 × (2 + 1) = (3 × 2) + 3 = (5 + 1) + 3 = 5 + (1 + 3)
     3 × (2 + 2) = (3 × (2 + 1)) + 3 = (5 + (1 + 3)) + 3 = 5 + (1 + 3 + 3)